ЛЕКЦИЯ 9

Изучение выявления Вредоносного ПО нейронными сетями

КЛАССИФИКАЦИЯ

Нейронные сети:

- Глубокие нейронные сети (DNN)
- Сверточные нейронные сети (CNN)
- Рекуррентные нейронные сети (RNN).
- Нейронная сеть Bidirectional Encoder Representations from Transformers (BERT)

Сбор данных

Для обучения модели необходима большая выборка файлов и сетевых данных, содержащих как вредоносное ПО, так и чистые файлы.

Источники данных:

- VirusTotal, MalwareBazaar, Malicia Dataset базы вредоносного ПО
- Логи антивирусов и IDS-систем (Snort, Suricata)
- Образцы исполняемых файлов (PE-файлы в Windows, ELF-файлы в Linux)
- Сетевой трафик (Wireshark, NetFlow)

Типы данных:

- Статические признаки (размер файла, хеши, секции РЕ, импортированные библиотеки)
- Динамические признаки (поведение в виртуальной среде, анализ АРІ-вызовов)
- Сетевой анализ (аномалии в HTTP, DNS-запросах, командно-контрольные сервера)

	-			
ma	Lv	ıα	r	-

	index	SizeOfOptionalHeader	Characteristics	MajorLinkerVersion	MinorLinkerVersion	SizeOfCode	SizeOfInitializedData	SizeOfUninitializedData	Addres
0	117796	224	8450	9.0	0	1024	1024	0	
1	23686	224	8450	8.0	0	35328	10752	0	
2	70211	224	271	6.0	0	12288	20480	0	
3	95900	224	8450	8.0	0	167936	8192	0	
4	8183	224	8482	14.0	0	4096	15360	0	
216346	210867	224	259	9.0	0	99328	1148928	0	
216347	176116	224	258	10.0	0	119808	375808	0	
216348	99211	224	8462	8.0	0	1536	2048	0	
216349	169002	224	258	10.0	0	28672	445952	16896	
216350	213842	224	783	2.0	56	29184	14848	110592	

216351 rows × 55 columns

Предобработка данных

Данные необходимо очистить и подготовить к обучению.

Действия:

- Удаление дубликатов и выбросов
- Приведение категориальных данных к числовому виду
- Нормализация признаков (например, MinMaxScaler)
- Feature Engineering создание новых признаков (например, частота API-вызовов)

```
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
scaler.fit(malware_data)
MinMaxScaler()
malware_scaled = pd.DataFrame(scaler.transform(malware_data))
with open('Malware_scaler.pkl', 'wb') as file:
    pickle.dump(scaler, file)
malware data
          index SizeOfOptionalHeader Characteristics
                                                 MajorLinkerVersion MinorLinkerVersion SizeOfCode SizeOfInitializedData
                                                                                                                  SizeOfUninitializedData Addres
     0 117796
                              224
                                            8450
                                                              9.0
                                                                                  0
                                                                                          1024
                                                                                                             1024
     1 23686
                              224
                                            8450
                                                               8.0
                                                                                         35328
                                                                                                            10752
     2 70211
                              224
                                            271
                                                                                          12288
                                                                                                           20480
     3 95900
                              224
                                            8450
                                                               8.0
                                                                                        167936
                                                                                                            8192
                              224
                                            8482
                                                              14.0
                                                                                          4096
                                                                                                            15360
216346 210867
                              224
                                             259
                                                              9.0
                                                                                         99328
                                                                                                          1148928
 216347 176116
                              224
                                             258
                                                              10.0
                                                                                  0
                                                                                        119808
                                                                                                           375808
 216348
         99211
                              224
                                            8462
                                                                                          1536
                                                                                                            2048
                                                                                                                                    0
        169002
                              224
                                             258
                                                              10.0
                                                                                         28672
                                                                                                           445952
                                                                                                                                 16896
 216349
216350 213842
                              224
                                            783
                                                              2.0
                                                                                 56
                                                                                         29184
                                                                                                            14848
                                                                                                                                110592
```

216351 rows × 54 columns

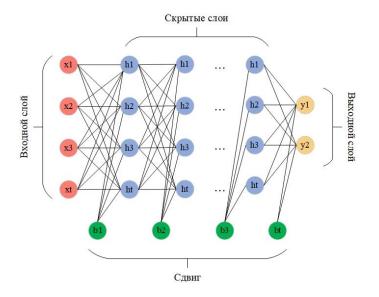
Chi_square feature selection

```
bestfeatures = SelectKBest(score_func=chi2, k=20)
fit feat = bestfeatures.fit(malware scaled, malware['legitimate'])
malware scores = pd.DataFrame(fit feat.scores )
malware_columns = pd.DataFrame(malware_scaled.columns)
featureScores = pd.concat([malware_columns, malware_scores],axis=1)
featureScores.columns = ['Specs', 'Score']
print(featureScores.nlargest(20, 'Score'))
    Specs
        0 10610.997896
       24 10285.818917
       22 3190.340238
            2987.899315
       34 1301.058610
           1282.168947
           1070.573703
18
            813.731644
             610.707103
32
             582.777707
             428.536642
             389.225729
23
             347.613734
16
             317.885149
17
             290.498051
             258.081053
43
            138.408542
             127.392942
39
             103.853904
             101.951695
```

- Разделение данных на обучающую и тестовую выборки
- Данные разделяются следующим образом:
- Обучающая выборка (Train Set): 70-80% данных
- **Тестовая выборка (Test Set)**: 20-30% данных
- Дополнительно можно использовать **кросс-валидацию (k-fold cross-validation)** для более точной оценки моделей.

ГЛУБОКИЕ НЕЙРОННЫЕ СЕТИ

• Глубокие нейронные сети (DNN) представляют собой модель нейронных сетей с двумя и более скрытыми слоями. Нейронная сеть состоит из входного слоя, содержащего входные данные, скрытых слоев, включающих узлы, называемые нейронами, и выходного слоя, содержащего один или несколько нейронов



ГЛУБОКИЕ НЕЙРОННЫЕ СЕТИ

- При этом $x = x_1, x_2, ..., x_f$ вляется входным вектором, $w_1, w_2, ..., w_i$ еса соединения каждого уровня,
- $b_1,b_2,...,b_i$ вектор смещения. Уровни от до l_2 образуют скрытые слои, $y_1,y_2,...,y_m$ явдяется выходным вектором.
- Элементы скрытых и выходных слоев называются нейронами. Они представлены функциями активации, отвечающими за нелинейное функциональное отображение между входными данными и переменной отклика. Самыми популярными функциями активации являются сигмоидная функция, функция гиперболического тангенса (tanh), выпрямленная линейная единица (ReLu) и softmax. Сигмоидная функция в основном используется на выходном слое в бинарной классификации, так как определяет выходное значение как 0 или 1. Функция tanh − это улучшенная версия сигмоидной функции с разницей лишь в том, что в tanh выходные значения находятся в диапазоне от -1 до 1. В скрытых слоях чаще всего применяется функция активации ReLu. Это приводит к выходному значению 0, если он получает отрицательный вход x, иначе для положительных входов он возвращает x без изменений, подобно линейной функции.
- Функция *softmax* применяется в многоклассовой классификации, вычисляя вероятность того, что каждое вхождение принадлежит к заранее определенному классу, и корректирует выходные значения для каждого класса так, чтобы они находились в диапазоне от 0 до 1. Функция *softmax* обычно используется только для выходного слоя.

ГЛУБОКИЕ НЕЙРОННЫЕ СЕТИ

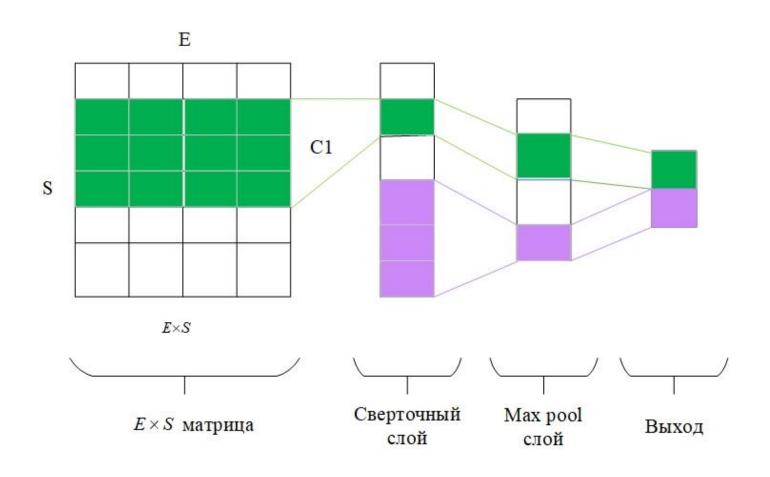
Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 32)	672
activation (Activation)	(None, 32)	0
dropout (Dropout)	(None, 32)	0
dense_1 (Dense)	(None, 16)	528
activation_1 (Activation)	(None, 16)	0
dense_2 (Dense)	(None, 1)	17
activation_2 (Activation)	(None, 1)	0
Total params: 1,217 Trainable params: 1,217 Non-trainable params: 0		

СВЕРТОЧНЫЕ НЕЙРОННЫЕ СЕТИ

Сверточные нейронные сети (CNN) — один из популярных и часто используемых видов нейронных сетей, приобрётший большую популярность благодаря использованию в задачах классификации и распознавания изображений. Они применяются при работе с изображениями, в которых фильтр перемещается по самому изображению. Также сверточные нейронные сети получили распространение и в задачах по распознаванию речи, обработке естественных языков и анализу тональности. При работе с текстовыми данными необходимо учитывать, что слова имеют разную длину, и в векторном представлении их необходимо привести к одинаковой размерности. Для векторного преобразования обычно используются такие вхождения слов, как Word2vec, Glove и FastText.

СВЕРТОЧНЫЕ НЕЙРОННЫЕ СЕТИ



СВЕРТОЧНЫЕ НЕЙРОННЫЕ СЕТИ

```
with strategy.scope():
    model_cnn = Sequential()
    model_cnn.add(Conv1D(filters=nb_filter, kernel_size=filter_length, activation='relu', input_shape=(20,1)))
    model_cnn.add(GlobalMaxPooling1D())
    model_cnn.add(Dense(hidden_dims))
    model_cnn.add(Dropout(0.4))
    model_cnn.add(Activation('relu'))
    model_cnn.add(Flatten())
    model_cnn.add(Dense(32, activation='relu'))
   model_cnn.add(Dropout(0.4))
    model_cnn.add(Dense(16, activation='relu'))
    model_cnn.add(Dropout(0.4))
    model_cnn.add(Dense(1, activation='sigmoid'))
    optimizer = Adam(learning_rate=0.000008)
    model_cnn.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy', Precision(), Recall(),
                                                                            tfa.metrics.FBetaScore(num classes=2,average="micro"
    model cnn.summary()
```

Model: "sequential"

Layer (type)	Output Shape	Param #
conv1d (Conv1D)	(None, 18, 250)	1000
<pre>global_max_pooling1d (Globa lMaxPooling1D)</pre>	(None, 250)	0
dense (Dense)	(None, 250)	62750
dropout (Dropout)	(None, 250)	0
activation (Activation)	(None, 250)	0
flatten (Flatten)	(None, 250)	0
dense_1 (Dense)	(None, 32)	8032
dropout_1 (Dropout)	(None, 32)	0
dense_2 (Dense)	(None, 16)	528
dropout_2 (Dropout)	(None, 16)	0
dense_3 (Dense)	(None, 1)	17

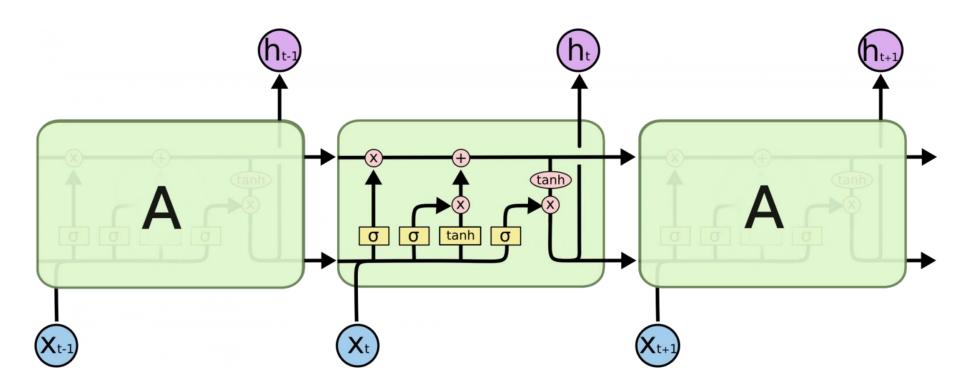
Total params: 72,327 Trainable params: 72,327 Non-trainable params: 0

LONG SHORT-TERM MEMORY - LSTM

- Долгая краткосрочная память (Long short-term memory LSTM) особая разновидность архитектуры рекуррентных нейронных сетей, способная к обучению долговременным зависимостям. Они были представлены Зеппом Хохрайтер и Юргеном Шмидхубером в 1997 году, а затем усовершенствованы и популярно изложены в работах многих других исследователей. Они прекрасно решают целый ряд разнообразных задач и в настоящее время широко используются.
- LSTM разработаны специально, чтобы избежать проблемы долговременной зависимости. Запоминание информации на долгие периоды времени – это их обычное поведение, а не что-то, чему они с трудом пытаются обучиться.
- Любая рекуррентная нейронная сеть имеет форму цепочки повторяющихся модулей нейронной сети. В
 обычной RNN структура одного такого модуля очень проста, например, он может представлять собой
 один слой с функцией активации tanh (гиперболический тангенс).

LONG SHORT-TERM MEMORY - LSTM

 Структура LSTM также напоминает цепочку, но модули выглядят иначе. Вместо одного слоя нейронной сети они содержат целых четыре, и эти слои взаимодействуют особенным образом



LONG SHORT-TERM MEMORY - LSTM

WARNING:tensorflow:Layer lstm_3 will not use cuDNN kernels since it doesn't meet the criteria. It will use a generic GPU kernel as fallback when running on GPU.

Model: "sequential_1"

Layer (type)	Output Shape	Param #
lstm_2 (LSTM)	(None, 20, 64)	16896
<pre>spatial_dropout1d_1 (Spatia lDropout1D)</pre>	(None, 20, 64)	0
lstm_3 (LSTM)	(None, 32)	12416
dropout_1 (Dropout)	(None, 32)	0
dense_1 (Dense)	(None, 1)	33
Total params: 29,345		

Total params: 29,345 Trainable params: 29,345 Non-trainable params: 0

СПАСИБО ЗА ВНИМАНИЕ!!!